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Abstract. The longitudinal elastic constants of C60 single crystals were measured in the〈100〉
and 〈111〉 directions nearTc = 260 K by an ultrasonic CW resonance technique in the MHz
region. The comparison with previous low-frequency(f = 1 Hz) elastic measurements yields a
huge acoustic phonon dispersion nearTc. We show that the dispersion is due to the crossover from
isothermal to adiabatic behaviour.

1. Introduction

Since the discovery of a method for producing bulk quantities of C60—the most prominent
fullerene—fullerene science has spread out rapidly into solid-state and molecular physics,
chemistry, and materials science, etc. In the short period since the discovery of C60, an
amazing variety of compounds have been found, which show all sorts of interesting material
properties. Examples include the metal–insulator transitions in the alkali-metal fullerites AC60,
the superconductivity of A3C60, and the magnetic ordering of the organic material TDAE-C60,
to name but a few.

Even pure C60 has very interesting properties: it is a model plastic molecular crystal.
At room temperature, the molecules are orientationally disordered and perform hindered
rotations at their lattice sites, resulting in anFm3̄m structure. Upon cooling, certain molecular
reorientations freeze out, leading via an order–disorder phase transition to aPa3̄ structure at
Tc = 260 K. BelowTc the molecules perform reorientational jumps between various nearly
degenerate sites. This motion dies out on further cooling below the freezing temperature,
which depends on the measurement timescale.

Several attempts have been made to measure the elastic properties of C60. There were
some measurements of the elastic properties for compacted C60 specimens [1,2] (all ultrasonic
measurements, atf = 5 MHz in [1] andf = 18 MHz in [2]), and polycrystalline films [3].
There have also been measurements made of Young’s modulus on small single crystals, using
vibrating-reed techniques [4, 5], performed in the 10 kHz to∼80 kHz region. Very recently,
Kobelevet al [6] succeeded in determining the whole elastic stiffness matrix of C60 single
crystals at room temperature by means of sound velocity measurements.

A few years ago, we measured the temperature dependence of the elastic constants of
C60 single crystals at very low frequencies (f = 0.1 Hz–50 Hz) [7], using a ‘Dynamic
Mechanical Analyzer’ (Perkin–Elmer). We found a rather large negative dip anomaly in the
elastic constant of about 30% atTc = 260 K for a measurement frequency of 1 Hz. All of the
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above mentioned elastic constant measurements indicate that this large anomaly is drastically
reduced at higher measurement frequencies. However, these results are not conclusive, since
they were performed either on polycrystalline or on solution-grown samples. To study the
acoustic phonon dispersion for the same samples, i.e. to test whether the strong dispersion
is present in pure C60, we have performed continuous-wave resonance measurements on
sublimation-grown C60 single crystals.

2. Experimental details

The C60 single crystals were grown by a sublimation–condensation method in a closed
evacuated glass tube [8]. High-performance liquid chromatography (sensitivity60.2%)
measurements on crystals prepared in the same way [15] show no signs of impurities. Also
Raman and IR spectroscopy measurements did not show any signs of the higher fullerenes.

The temperature dependences of the elastic constants were measured with the continuous-
wave (cw) resonance technique [9]. In this technique, standing waves are set up in a composite
oscillator consisting of a transducer, a coupling film, and a sample by applying the sinusoidally
varying voltage over the transducer. The sound velocityvs is obtained in terms of sample length
ls , densityρ, and frequencyfn asvs = 2ls(fn+1−fn)wherefn is thenth resonance frequency
of the specimen. The elastic stiffness constants can be determined from the sound velocity as
C = ρv2

s .
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Figure 1. The impedance of the composite oscillator
as a function of the frequency.

Since the resonance frequencies of the composite oscillator correspond to the maxima of
the impedance, the sound velocity in the probe can be determined by measuring the impedance
as a function of the frequency. Figure 1 shows a typical frequency spectrum of the composite
oscillator at room temperature using C60 as the sample. In our experimental set-up, lithium
niobate transducers with resonance frequency of 15 MHz were coupled to C60 samples with
a thin film of glycerol. The impedance of the composite oscillator was measured with an
HP 4192A LF impedance analyser and the temperature was controlled with a He closed-cycle
cryostat.

The measurements were performed on two different sets of crystals:

• Measurements in the〈111〉 direction were made on crystals which have been grown in
the form of a plate, with two large(111) faces. These samples were used without any
mechanical polishing.
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• Since no crystals with two large(100) faces were available, for measurement in the〈100〉
direction, samples with one dominant(100) face were selected, and a(1̄00) face was
created by polishing.

The typical thickness of the samples used for the cw measurements was≈1 mm, with an area
of ≈10 mm2.

3. Experimental results

From the cw measurements on the C60 single crystals, we have determined the temperature
dependences of the sound velocities and the elastic constants for longitudinal modes in〈100〉
and〈111〉 directions. The corresponding elastic constants areC11 and

C〈111〉 = 1

3
(C11 + 2C12 + 4C44)

respectively. The measured sound velocities at 262 K werev
〈100〉
L = 3030 m s−1 and

v
〈111〉
L = 3615 m s−1. This agrees quite well with recent ultrasonic measurements on C60

single crystals [6].
Figures 2 and 3 show the temperature dependences of the sound velocities and elastic

constants for〈100〉 and〈111〉 longitudinal modes.
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Figure 2. Continuous-wave measurements in the〈100〉
crystallographic direction.

Figure 3. Continuous-wave measurements in the〈111〉
crystallographic direction.

It should be noticed that the sound velocities and elastic constants show quite different
temperature behaviours. The sound velocities exhibit a small negative discontinuity atTc,
whereas the corresponding elastic constants show a positive jump at the phase transition. This
unusual behaviour is due to the fact that the discontinuity in the thermal expansion of C60

at Tc (see figure 4) prevails over the discontinuity invL. Figure 5 shows the low-frequency
(f = 1 Hz) Young’s modulusY 〈111〉 of C60 [7] in the vicinity of the phase transition. One
clearly observes that the negative-dip anomaly which appears at low frequencies (figure 5)
is completely absent at high measurement frequencies (figures 2 and 3). Instead a positive
anomaly appears. In the next section we will discuss this behaviour in more detail.
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Figure 4. Thermal expansion of C60 crystal. Figure 5. The Young’s modulus of C60 measured at
f = 1 Hz in the〈111〉 direction.

4. Discussion

It is well known that the phase transition from the orientationally disordered phase with space
groupFm3̄m to the ordered phasePa3̄ involves a six-component order parameter [10]. The
Landau free energy includes a cubic invariant, which implies that the phase transition is of
first order. For a qualitative description of our experimental results we use a simplified model,
with a one-component order parameterη and a scalar strain variableε. To describe the elastic
properties, we have to include the coupling between the order parameter and the strain. The
lowest order coupling term in the free-energy expansion is of the typeη2ε [11]. At least
two different mechanisms could be responsible for the observed acoustic dispersion: one
is connected with the crossover from isothermal to adiabatic elastic behaviour (temperature
fluctuations) and the other is due to the order parameter relaxation (the Landau–Khalatnikov
mechanism). The corresponding theory was already worked out in [12], and we will here only
summarize the main results. To include the effects of heat diffusion we use the following free
energy:

F = A

2
(T − T0)η

2 +
B

3
η3 +

D

3
η4 + aη2ε +

b

2
η2ε2 +

C0

2
ε2 − C0α0(T − T∗)ε − S0T (1)

whereα0 andS0 are the thermal expansivity and the entropy, respectively, aboveTc, andC0

is the background part of the elastic constant.
Dynamic elastic constants close to a phase transition can be derived from the equations

of motion for a system of coupled strainε, order parameterη, and temperatureT . These are
obtained from Lagrange’s equations for continuous systems by taking the Landau free energy
(1) as the potential energy in the Lagrangian. By solving the linearized equations forδε, δη, and
δT—which are the fluctuations of the corresponding quantities—in the Fourier-transformed
space one obtains the dynamic elastic constant as [12]

C(q, ω) = C0 − 4a2η2
0χη(T )

1− iωτη
− (C

0)2α2T

CV

iωτth
1− iωτth

(2)

whereχη is the order parameter susceptibility,CV the isochoric specific heat, andα the thermal
expansivity.
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The second term in equation (2) is the well known Landau–Khalatnikov contribution, and
is frequency dependent due to the order parameter relaxation. The third term—we call it the
thermal diffusion term—describes the crossover between the isothermal and adiabatic limit,
when going fromωτth � 1 toωτth � 1. The thermal relaxation timeτth is given by

τth(T , q) = CV (T )

κ(T )q2
(3)

whereκ is the thermal conductivity andq is the wave vector of the applied strain field,
i.e. q = 2π/λ (λ ≈ 100× 10−6 m) in ultrasonic experiments. In a three-point-bending
experiment,λ = 2d, whered is the thickness of the sample. Using typical values for
CV /κ = 103 s cm−2 one obtainsτth = 2× 10−3 s for ultrasonic waves andτth = 10−1 s
for DMA measurements with samples of about 0.3 mm thickness. ThereforeωUSτth(q)� 1,
implying that with ultrasonic measurements the adiabatic elastic constants are probed. In a
DMA experiment, one can varyτth(q) by varying the sample size, and one can measure the
crossover from isothermal to adiabatic behaviour by varying the measurement frequency or
the sample size.

The difference between the isothermal(CT ) and the adiabatic(CS) elastic constants is

(CS − CT )(T ) = (C0)2α2(T )T

CV (T )
(4)

which is a well known thermodynamic relation [13].
In fact the temperature dependences of the thermal expansivity [14] and the specific heat

have been measured [15] by several authors. Using these values we have calculated the
difference between the isothermal and the adiabatic elastic constant at various temperatures
nearTc [12]. It turns out that the adiabatic correction displays a divergent behaviour asTc is
approached due to the large transition anomaly of the thermal expansivity. This value is of
the order of the negative elastic anomaly measured at low frequencies (1 Hz). This implies
that the strong acoustic dispersion observed in C60 nearTc is due to the isothermal–adiabatic
crossover.

These results show that at transitions which exhibit large anomalies in the thermal
expansivity (e.g. near aλ-type phase transition), the elastic anomaly due to theη2ε-coupling
can be fully suppressed in the adiabatic limit. The fact that the isothermal elastic constants
show pronounced anomalies while the adiabatic ones exhibit no anomalies has an important
implication. According to thermodynamics, the ratio of the adiabatic compressibility and the
isothermal compressibility is related to the ratio between the specific heat at constant volume
CV and the specific heat at constant pressureCp. This implies for C60 thatCV exhibits almost
no anomaly atTc in contrast to the largeλ-anomaly ofCp. This means that if the free thermal
expansion of C60 single crystals is inhibited, the features of the phase transition are dramatically
changed. Thus, the coupling between the order parameter and the strain plays the decisive role
in the phase transition of C60.

Moreover, from the present investigation we have learned that, especially in cases for which
large thermal expansivity is exhibited nearTc (e.g. nearλ-type transitions), high-frequency
elastic measurements may not be adequate for studying the nature of the elastic coupling, phase
transition mechanisms, critical behaviour, etc.

There are not many cases for which the isothermal–adiabatic crossover has been studied
experimentally. One is that of NaNO2 [16]. It undergoes two order–disorder phase transitions
to an antiferroelectric and to a ferroelectric phase. The adiabatic elastic compliances were
measured by a composite-oscillator method at about 100 kHz. They showed only small
anomalies at the transition points. The isothermal elastic constants were calculated from
the adiabatic ones and the data on the specific heat and the thermal expansivity. The authors
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have shown that there is a large difference between the adiabatic and the isothermal elastic
compliances. In particular, near the antiferroelectric phase transition the isothermal elastic
compliances tend to diverge towardTc, while the adiabatic ones exhibit only small cusps at
this temperature.

Another example—KSCN—was recently studied by us. KSCN undergoes an order–
disorder phase transition to an antiferrodistortive phase atTc = 415 K [17]. We succeeded
in measuring the frequency dependence of the elastic constants over a wide frequency
range (f = 0.1 Hz–50 Hz using a ‘Dynamic Mechanical Analyzer’ (Perkin–Elmer), and
f = 10 MHz using ultrasonic techniques) [18]. In this case we found two acoustic phonon
dispersions: the low-frequency one (between 0.1 Hz and 50 Hz with characteristic time
τ ≈ 0.1 s) was due to the crossover from isothermal to adiabatic behaviour, and the second
one (betweenf = 50 Hz andf = 10 MHz) was due to the order parameter relaxation.
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This work was supported by thëOsterreichsichen Fonds zur Förderung der wissenschaftlichen
Forschung, Project No P10924-PHY.

References

[1] Kobelev N P, Soifer Ya N, Bashkin I O, Gurov A F, Moravskii A P and Ponyatovsky E G 1995Phys. Status
Solidib 190157

[2] Hucho C, Kraus M, Maurer D, M̈uller V, Werner H, Wohlers M and Schlögl R 1994Mol. Cryst. Liq. Cryst.245
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